As your child learns about different types of measurements in school, it can be fun for him to practice at home. Try these creative activities for converting from one unit to another.

Undercover spy

Materials: paper, pencil, die, tokens, game board with a path

On separate slips of paper, have your youngster write directions like “feet to inches,” “yards to feet,” “km to m,” and “m to cm.” Stack the slips facedown. On another sheet, he should make a “codebreaker” with conversions (1 foot = 12 inches, 1 yard = 3 feet, 1 km = 1000 m, 1 m = 100 cm).

On each turn, roll a die and pick a slip. A roll of 3 and draw of “feet to inches” makes his spy name “3 feet.” Now, he must do the conversion to change his “cover” (“3 feet” becomes “36 inches”). Once he announces his new name, he moves the number of spaces he rolled and returns the slip to the pile. The first to the finish line wins!

That’s greater

Practicing math concepts can be as simple as playing “Pick a Number.” Ask your child to think of a number between 1 and 10,000. Then, guess a number, and have her say if it’s greater than, less than, or equal to her number. Keep guessing numbers based on her clues until you name her number.

Curious minds

Does your youngster ask lots of questions? Making observations and asking questions can be the beginning of scientific inquiry. Anytime he has a science question, he could jot it in a journal. Over time, he can look up answers or design experiments to investigate. Maybe one day he’ll become a scientist or an inventor!

Book picks

1. *The Multiplying Menace Divides* (Pam Calvert) presents a fun story along with lessons in dividing by whole numbers and fractions.
2. Your child can put candy to scientific use with the ideas in *Candy Experiments* (Loralee Leavitt). She’ll “grow” gummi worms, make rock candy, shatter taffy, and more.

From feet to inches

As your child learns about different types of measurements in school, it can be fun for him to practice at home. Try these creative activities for converting from one unit to another.

Measurement mobile

Materials: construction paper, scissors, yarn, tape

Tell your child to cut a large circle and label it “gallon.” Then, he can cut four smaller circles, label each “quart,” and hang them from the gallon. To each quart, he should attach two smaller “pint” circles, and to each pint two even smaller circles for cups. Tip: Use different-colored paper for each measurement.

Let him hang his mobile. Then, ask each other questions like “How many pints are in a gallon?” (8) or “How many cups are in a quart?” (4) Refer to his mobile for the answers—and eventually he’ll learn them all.

Chain-reaction bowling

A chain reaction happens when one event triggers another event, then another, and another. Let your youngster have fun building her own chain reaction to see how this works.

Ask her to gather supplies like toy cars, balls, dominoes, empty paper towel tubes, and books. Using an empty water bottle as a target, can she set up a chain reaction to knock it down?

For example, a car racing down a steep track could start a line of dominoes falling, which would start a ball rolling toward the water bottle. What will your child come up with?
Strategies for word problems

Word problems help children understand how math fits into the real world. Suggest these steps for working on them.

Start with a problem from your youngster’s homework or one that you make up. Example: Susie’s soccer team baked 6 dozen cookies for a bake sale. They sold the cookies for $3.50 per half-dozen. If they sold out, what would the total sales be?

1. Write what you know. Your child might write: “6 dozen cookies” and “$3.50 per half-dozen.”

2. Find what the problem is asking for. The problem mentions cookies and money, but the question asks about the total amount of money.

3. Determine the operations needed. She could multiply to find the price per dozen (multiply $3.50 by 2, or $7.00). Then, she would multiply again to find the total amount of money ($7.00 x 6 dozen = $42.00).

4. Check that the answer makes sense. Have your youngster reread the problem. If she came up with $420.00 for 6 dozen cookies, that would sound like too much—and would be a clue to redo her work.

SCIENCE LAB A-mazing plants

Let your child observe what a plant will do to find light.

You’ll need: potato with sprouts growing out of it (tip: a potato left in the dark will eventually sprout), pot, dirt, shoebox, scissors, cardboard, tape

Here’s how: Have your youngster plant the potato in the pot (sprouts facing up) and water until moist. Then, he can cut a quarter-size hole in a short side of the shoebox and tape cardboard strips inside to create a maze. He should stand the box up (hole at the top), place the plant inside, and put on the lid. Finally, he’ll place the box by a sunny window and open it every few days to water.

What happens? The plant will grow around the maze and out the hole to reach light!

Why? Plants need light to grow. A plant will grow in any direction to find a light source.

Q & A

“But math’s not my thing”

Q: My son does fine in math class, but whenever he gets stuck on homework, he gives up and says, “Math’s just not my thing!” What should I do?

A: Try to help him see things another way. People may have different ways of learning, but everyone can learn math—and he can, too. Plus, he’ll need to use math throughout his life, just like everyone else.

Together, figure out how he learns best. Does he do better by hearing, seeing, or using a hands-on approach? For instance, ask him to solve a problem like 34 – 26, first by hearing you say it, then by doing a written version, and finally by moving around small objects (dry beans or pennies). Let him try these approaches with various problems until he sees which works best. Then, he could use that method when possible.

Note: If he continues to be frustrated, ask his teacher for suggestions.

MATH CORNER Wave the fraction flag!

Combine fractions and flag-making for a fun way to decorate a room. Here’s how.

On graph paper, have your child draw a rectangle 4 squares high and 6 squares long. What kind of flag can she create if she colors each ⅓ of the flag with a different color? She’ll need to figure out how many squares to use for each color. Since there are 24 squares (4 x 6 = 24), ⅓ would be 6 squares (24 ÷ 4 = 6).

Tip: Ask her to write the fraction equation the colors represent (⅓ + ⅓ + ⅓ + ⅓ = 1).

Encourage her to make more fraction flags, such as three colors for ⅓ each (8 squares each), or one color representing ⅓ (18 squares) and another for ⅔ (6 squares). Each time, she can write the equation she makes (⅓ + ⅓ + ⅓ = 1 or ⅔ + ⅓ = 1).

When she finishes, she could cut out her flags and hang them on her bedroom wall.

Idea: Suggest that she change the size of the rectangle and make more flags.